
Ordering strict partial orders
to model behavioural refinement

Mathieu Montin
Université de Toulouse ; INP ; IRIT

2 rue Camichel, BP 7122
31071 Toulouse Cedex 7, France
mathieu.montin@enseeiht.fr

Marc Pantel
Université de Toulouse ; INP ; IRIT

2 rue Camichel, BP 7122
31071 Toulouse Cedex 7, France

marc.pantel@enseeiht.fr

ABSTRACT
Behavioural refinement plays a key role in the development
of correct–by–construction complex systems such as real time
distributed systems. Indeed, behavioural models coupled
with formal methods allow to assess the correctness of sys-
tem models with respect to system requirements. In that
purpose, behavioural refinements allow preserving the cor-
rectness of the models during the development phases, from
the early specification to the final embedded system. Refine-
ment is usually handled in an operational matter such that
each level of abstraction is derived from notions coming from
the closest higher level of abstraction. This vision however is
unsuitable when coupled with denotational semantics where
the solutions are not built but rather validated by the se-
mantics. Our work targets the definition of a refinement
relation compatible with this kind of semantics. This rela-
tion is integrated to CCSL where refinement is not a native
construct of the language and whose semantics is given in a
denotational manner.

CCS Concepts
•Software and its engineering→ Formal software veri-
fication; •Computer systems organization → Embed-
ded software; •Theory of computation → Type theory;

Keywords
Refinement; Behavioural models; Agda; CCSL

1. INTRODUCTION
Software is now ubiquitous and involved in complex in-

teractions between the human user and the physical world
in so-called cyber-physical systems (CPS). To handle the
growing complexity of these systems, separation of concerns
is mandatory. Two different kinds of separation are usu-
ally identified throughout their development: the horizontal
and vertical separation. The first one corresponds to the
various concerns in the system architecture which might be
described in different domain specific modelling languages
(DSMLs). The second one corresponds to the different steps
in a development leading from the requirements to the im-
plementation through the use of refinements. The horizon-
tal separation is usually handled through the abstraction of
the different parts of the system in a common behavioural
language. However, most of these languages allow the ex-
pression of constraints between the different preoccupations
of the system but lack the required expressiveness to handle

vertical separation. In this paper, we propose a formal defi-
nition of the relation of refinement in a denotational context.
It relies on an order between the strict partial orders that
are used to bind together the different instants on which
events occur. This work has been conducted using the Agda
proof assistant and associated to CCSL denotational seman-
tics, although no knowledge regarding both languages will
be needed here as details cannot be given due to space limits
but the whole development is available on the first author’s
web page.

2. A REFINEMENT EXAMPLE
The transition system depicted in Figure 1 is an exam-

ple of a simple system, which can be alternatively enabled
and disabled. While it is active, an action can be executed
any number of times. We focus on event traces and event
refinement and not state traces and refinement like [3] as
we model time using instantaneous event in a synchronous
manner.

Idle Run

Enable

Disable

Execute

Figure 1: A simple system

By picturing our example with a transition system, we
implicitly provided an operational semantics. Indeed, the
transition system can be seen as a machine which builds
a correct execution for the system. A denotational seman-
tic however, does not give any way of creating such traces
and instead provides predicates to assess the correctness of
a given trace. This distinction is essential since most refine-
ment strategies rely on operational semantics while we aim
at handling systems through their denotational semantics.
A possible trace for our example is depicted on Figure 2.
ten, tdi and tex respectively represent the occurrences of the
“Enable”, “Disable” and “Execute” transitions. This trace
could have been generated from our transition system and
would be validated by any denotational semantics describing
our example.

This trace starts with the birth of the system and possibly
goes on indefinitely, which makes this representation partial.
In addition, this design places each event on the same time-
line, thus ignoring horizontal separation. In order to make
it visible, we represent each event on a specific timeline on

ten tdi ten tex tex tdi ten tex tdi

Figure 2: A trace on a single timeline

Figure 3. The instants on each timeline are totally ordered
and those in the same vertical dotted lines are coincident.
These notions will be elaborated when introducing the strict
partial orders.

ten

tdi

tex

Figure 3: One timeline per event

The action executed by this system can be specified in
various ways. In this paper, we imagine that it is connected
to a light through the use of a memory containing a variable
m. This variable will be assigned the values 1 or 0, and the
light will be turned on and off accordingly. When the sys-
tem is enabled (ten transition), the light remains down until
a button is pressed (tex transition) shuts it down. Pressing
the same button will alternatively turn it off and on. Dis-
abling the system (tdi transition) turns it off, as depicted on
Figure 4.

Idle Run

ten {m← 0}

tdi {m← 0}

tex {m← 1−m}

Figure 4: The system pilots a light

By specifying the system behaviour, we defined events to
add to its traces. tm0 and tm1 respectively correspond to the
variable m being assigned 0 and 1. These additions belong
to horizontal separation since we added a new part to our
system (the module linked to the light). One of these pos-
sible traces is depicted in Figure 5. As we add new events,
refinement cannot be defined as a simple inclusion of traces
like [5].

ten

tdi

tex

tm0

tm1

Figure 5: The new trace of the system

Some events are occurring simultaneously, for instance ten
always occurs on an instant coincident to an occurrence of
tm0 . Such relations between events can be defined in CCSL
(a simple case of sub-clocking here), which has been handled
in a previous work on the mechanization of this language.

It is important to note that when describing this system,
we implicitly took a certain point of view regarding its def-
inition. We deliberately ignored some low level concerns
regarding the way such a memory is handled. This is a mat-
ter of vertical separation. The next sections of this paper
will focus on a more concrete level of abstraction. But first
we need to introduce some standard notions regarding time
handling in asynchronous languages.

3. REPRESENTATION OF TIME
When considering executable languages, we observe differ-

ent events which occur on given instants of time. Although
the common vision of time is a straight line inducing a to-
tal order between each existing instant, asynchronous sys-
tems introduce uncertainties that weaken this order. Two
instants are indeed not necessarily comparable, which leads
to the use of partial orders to represent the existing links
between them. Thus, each pair of instants is either:

• comparable, through a precedence relation ≺
• equivalent, through a coincidence relation ≈
• unrelated (neither comparable nor equivalent)

Some properties are required for these relations to form a
strict partial order:

• ≈ is an equivalence relation

• ≺ is irreflexive regarding ≈
• ≺ is transitive

• ≺ respects the classes induced by ≈

4. BEHAVIOURAL REFINEMENT

4.1 Goal
Whenever a certain event occurs on a given instant, its oc-

currence is considered immediate and punctual in the time-
line. However in some cases, such an event can be decom-
posed in smaller events which contradicts this property. In
our example, the“Enable”event can be viewed as a sequence
of sub–events, such as powering up the system, retrieving
the address of m, computing the value of 0 (here there is
no actual computation since 0 is an atomic value, but there
could be in the case of a more complicated arithmetical ex-
pression) and storing this value at the right address. These
events, except for the first one, are used to handle the com-
putation and the storing of a value in a memory. Taking
into account these events require to view the system at a
more concrete level, in which case its representation as a
transition system is depicted in Figure 6.

1 2 3

Idle Run

ten

tdi {m← 0}

tsta tcom

tsto

tex {m← 1−m}

Figure 6: The refined system

The “Enable” transition has been refined in several tran-
sitions. ten represents the powering of the system, tsta the

stacking of the address of m, tcom the computing of the value
of the expression 0 and tsto the storing of the computed value
at the stacked address.

Since both points of view we discussed are valid repre-
sentations of our system, it should be possible to describe
them in any concurrent language, without losing the link
that binds them. This leads to the main goal of our pro-
posal to model behavioural refinement, which is to describe
a system at different levels of observation without losing the
link between these levels. Thus, an instant at a certain level
could be refined by several instants at a lower level, just like
the “Enable” event was split into several different events.

Addressing this issue would allow system developers to
focus on their specific view of the system rather than a
common view shared among all of them. By representing
it from the right angle, they could grasp their constraints
even better without bothering about more concrete details.
The system could then be solved at different levels with the
guarantee that none of them will be compromising the oth-
ers. Furthermore, this notion of refinement could be used to
make explicit and prove simulations and bisimulations (or
mostly weak bisimulations) between systems. In this case,
the two specifications would not be different levels of ob-
servation of a system, but different ways of specifying its
behaviour.

4.2 Different levels of refinement
In our example, the higher level of observation is repre-

sented on Figure 7 while the lower level is represented on
Figure 8. In both these timelines, events not refined are
omitted, for the sake of clarity. They do not influence the
reasoning we are conducting, thus their omission is accept-
able. The different instants have been annotated with natu-
ral numbers in order to manipulate them more easily. From
the higher point of view, all the instants on which the sub-
events occur are equivalent to each other and to the con-
taining event. Their underlying order has no impact on the
trace of the system at this level.

0 5 10ten1

1 6 11ten2

2 7 12
tsta

3 8 13
tcom

4 9 14
tsto

Figure 7: The annotated higher level of observation

For the lower level of observation, the different instants are
ordered in such a way that they respect the specification in
Figure 6. The vertical dashed lines represent the equivalence
classes induced by the thinner strict partial order, while the
rectangles represent the ones induced by the refined strict
partial order.

The representation in Figure 7 allows us to to assess the
coincidence and the precedence relation that bind its differ-
ent instants, as subsets of N×N. Since both these relations
must be transitive, the coincidence must be symmetrical and
they must form a strict partial order, we will omit the related

ten1

ten2

tsta

tcom

tsto

0 5 10

1

2

3

4

6

7

8

9

11

12

13

14

Figure 8: The annotated lower level of observation

elements which can be deduced from these properties.

Coincidence Precedence
(0 , 1) (0 , 2) (0 , 3)

(0 , 5)
(0 , 4) (5 , 6) (5 , 7)
(5 , 8) (5 , 9) (10 , 11)

(5 , 10)
(10 , 12) (10 , 13) (10 , 14)

These traces are potentially infinite, thus we only give
the visible subset of each relation. However, we can define
them mathematically for any natural number in order to
handle their infinite number. This is done by relying on the
Euclidean decomposition by 5:

∀(a, a′) ∈ N2,∃! (q, r, q′, r′) ∈ N4 :
a = 5q + r ∧ r < 5 ∧ a′ = 5q′ + r′ ∧ r′ < 5

These relations are defined as follows:

∀(a, a′) ∈ N2, a ≈2 a′ d⇐⇒ q = q′

∀(a, a′) ∈ N2, a <2 a′ d⇐⇒ q < q′

The same work can be achieved for the lower level of ob-
servation, which is displayed on Figure 8. The relations
extracted from Figure 8 are depicted in the table below.
As previously explained, only the relevant couples are men-
tioned.

Coincidence Precedence
(0 , 1) (1 , 2) (2 , 3) (3 , 4)
(5 , 6) (4 , 5) (6 , 7) (7 , 8)

(10 , 11) (8 , 9) (9 , 10) (11 , 12)
. . . (12 , 13) (13 , 14) . . .

Here are the relations at the concrete level:

∀(a, a′) ∈ N2, a ≈1 a′ d⇐⇒
(q1 = q2) ∧ ((r1, r2) ∈ [0, 1]2 ∨ (r1 = r2 ∧ r1 /∈ [0, 1]))

∀(a, a′) ∈ N2, a <1 a′ d⇐⇒
(q1 < q2) ∨ ((q1 = q2) ∧ (r1 < r2) ∧ (r2 6= 1))

Our example exhibits two different couples of relations,
which should be in a situation of refinement.

4.3 Our proposal
As an attempt to formalize this approach, we propose to

connect different levels of abstraction through the strict par-
tial order they carry. We define the following relation <r to
ensure the underlying relations fulfil the right conditions to
maintain the integrity of the different representations re-
garding the semantics of refinement:

∀I ∈ Ω, ∀(<c, <a,≈c,≈a) ∈ (I × I)4 :

(<c,≈c) <r (<a,≈a)
d⇐⇒ ∀(i1, i2) ∈ I :

i1 <c i2 ⇒ i1 <a i2 ∨ i1 ≈a i2 (1)
∧ i1 <a i2 ⇒ i1 <c i2 (2)
∧ i1 ≈c i2 ⇒ i1 ≈a i2 (3)
∧ i1 ≈a i2 ⇒ i1 ≈c i2 ∨ i1 <c i2 ∨ i2 <c i1 (4)

<r is defined as a relation between pairs of relations (<c

,≈c) and (<a,≈a) that represent the strict precedence and
the equivalence composing the strict partial orders bound
to both levels of abstraction. In this definition, the level
annotated by the index c is the more concrete level and a
is the more abstract. We state what it means for a pair of
relations to refine another pair of relation. These relations
are defined on the set I of instants. We can only compare
pairs of relations that are bounded to the same set. This
definition is composed of four predicates, each of which in-
dicate how one of the four relations is translated into the
other level of observation:

1. If a strictly precedes b in the lower level, then it can
either be equivalent to it in the higher level or still precede
it.

2. However, if a strictly precedes b in the higher level, then
it can only still precede it in the lower level. This direction
doesn’t allow any loss of information.

3. On the contrary, if a is equivalent to b in the lower level,
it can only stay equivalent in the higher level.

4. If a is equivalent to b in the higher level then we only
assure that these two instants are still related in the lower
level. We can gain information this way.

This definition can be extended to strict partial orders:
A strict partial order refines another when their underlying
relations are in a relation of refinement.

5. RELATED WORKS
Our work takes place in GEMOC that mixes both hori-

zontal and vertical separation of concerns. Indeed, GEMOC
allows to define the various DSMLs used to model the vari-
ous parts in a CPS in the various phases of the development.
GEMOC relies on the Clock Constraint Specific Language
(CCSL) in order to model both the MoC for the various
DSML [6, 8, 12] and the coordination between DSML using
the BEhavioural COOrdination Language (BeCooL) [11].

Our approach is motivated by the lack (to our knowl-
edge) of formal definition of behavioural refinement in a
context of denotational semantics. Refinement has already
been studied widely through operational semantics [15, 13],
and is the core concept advocated in developing correct–by–
construction systems with the B [1] and Event-B [2] meth-
ods.

Our proposal provides a mechanized relation of refinement
in Agda and aims at being coupled to a previous work on a
mechanisation of the semantics of CCSL in the same proof
assistant, based on a paper denotational semantics [7]. Thus,
this approach could be reused for any other concurrent lan-
guages. Formal mechanization of temporal languages has
already been done using other formal methods, for example
[10] uses Higher Order Logic in Isabelle/HOL; [9] and [14]
use the Calculus of Inductive Constructions in Coq, see [4].

6. CONCLUSION
This paper presented a mathematical relation over strict

partial order whose goal is to model behavioural refinement
in a denotational manner. Each level of abstraction is as-
sociated to a specific strict partial order while our rela-
tion binds them together. This definition has been mech-
anized in the Agda proof assistant, which allowed us to
prove several properties about it as well as connect it to
the mechanization of CCSL we made in a previous work.
The bridge between these contributions has allowed us to
prove the preservation of several CCSL operators through
our relation of refinement. This work will lead to an exten-
sion of CCSL with a refinement operator which will allow
both comparing language semantics in GEMOC and con-
ducting correct–by–construction developments more easily
with CCSL. The whole development, including the parts
about CCSL, is available online on the first author’s web
page.

7. REFERENCES
[1] J. Abrial. The B-book - assigning programs to meanings.

Cambridge University Press, 2005.

[2] J. Abrial. Modeling in Event-B - System and Software
Engineering. Cambridge University Press, 2010.

[3] R. Back and J. von Wright. Trace refinement of action systems.
In CONCUR ’94, Concurrency Theory, 5th Intl. Conf.,
Uppsala, Sweden, Aug. 22-25, Proc., pages 367–384, 1994.

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. An
EATCS Series. 2004.

[5] A. Cavalcanti and M. Gaudel. A note on traces refinement and
the conf relation in the unifying theories of programming. In
Unifying Theories of Programming, 2nd Intl. Symp., UTP
2008, Dublin, Ireland, Sep. 8-10, Revised Selected Papers,
pages 42–61, 2008.

[6] B. Combemale, J. DeAntoni, M. V. Larsen, F. Mallet,
O. Barais, B. Baudry, and R. B. France. Reifying concurrency
for executable metamodeling. In Software Language
Engineering - 6th Intl. Conf., SLE 2013, Indianapolis, IN,
USA, Oct. 26-28. Proc., 2013.

[7] J. Deantoni, C. André, and R. Gascon. CCSL denotational
semantics. Research Report RR-8628, 2014.

[8] J. DeAntoni, P. I. Diallo, C. Teodorov, J. Champeau, and
B. Combemale. Towards a meta-language for the concurrency
concern in dsls. In Proc. of the 2015 Design, Automation &
Test in Europe Conf. & Exhibition, DATE 2015, Grenoble,
France, March 9-13, 2015, 2015.

[9] M. Garnacho, J. Bodeveix, and M. Filali-Amine. A mechanized
semantic framework for real-time systems. In Formal Modeling
and Analysis of Timed Systems - 11th Intl. Conf.,
FORMATS 2013, Buenos Aires, Argentina, August 29-31,
2013. Proc., 2013.

[10] R. Hale, R. Cardell-Oliver, and J. Herbert. An embedding of
timed transition systems in HOL. Formal Methods in System
Design, 3(1/2), 1993.

[11] M. E. V. Larsen, J. DeAntoni, B. Combemale, and F. Mallet. A
behavioral coordination operator language (bcool). In 18th
ACM/IEEE Intl. Conf. on Model Driven Engineering
Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, Sep. 30 - Oct. 2., 2015.

[12] F. Latombe, X. Crégut, B. Combemale, J. DeAntoni, and
M. Pantel. Weaving concurrency in executable domain-specific
modeling languages. In Proc. of the ACM SIGPLAN Intl.
Conf. on Software Language Engineering, SLE 2015,
Pittsburgh, PA, USA, Oct. 25-27, 2015.

[13] D. Murphy and D. Pitt. Real-timed concurrent refineable
behaviours, pages 529–545. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1991.

[14] C. Paulin-Mohring. Modelisation of timed automata in coq. In
Theoretical Aspects of Computer Software, 4th Intl. Symp.,
TACS 2001, Sendai, Japan, October 29-31, 2001, Proc., 2001.

[15] G. Ramanathan. Refinement of events in the development of
real-time distributed systems. Theoretical Computer Science,
133(2):341 – 359, 1994.

