
Mechanizing the denotational semantics of the
Clock Constraint Specification Language

Mathieu Montin1,2,3 and Marc Pantel1,2,4

1 Université de Toulouse ; Toulouse INP, IRIT
2 CNRS ; Institut de Recherche en Informatique de Toulouse (IRIT)

3 mathieu.montin@enseeiht.fr, http://montin.perso.enseeiht.fr
4 marc.pantel@enseeiht.fr, http://pantel.perso.enseeiht.fr

Abstract. Domain Specific Modelling Languages provide the designers
with appropriate languages for the task they must conduct. These ded-
icated languages play a key role in popular Model Driven Engineering
(MDE) approaches. Their semantics are usually written in a semi-formal
manner mixing natural language and mathematical notations. The mech-
anization of these semantics rely on formal specification languages. They
are usually conducted in order to assess the correctness of verification
and transformation tools for such languages. This contribution illustrates
such a mechanization for the Clock Constraint Specification Language
(CCSL). This language allows to model the timed concurrency concern
in the MARTE UML profile and was designed to be easier to master than
temporal logics for the system engineers. Its semantics has been defined
in the usual semi-formal manner and implemented in the TimeSquare
simulation tool. We discuss the interest of this mechanization and show
how it allowed to prove properties about this language and ease the def-
inition of a refinement relation for such models. This work relies on the
Agda proof assistant and is presented accordingly.

Keywords: DSML · Semantics mechanization · Proof assistants · CCSL

1 Introduction

As systems are getting more and more complex, a strong separation between the
various concerns in a system has become a major requirement. Specialists of each
engineering domain define their views of the system in their own language, called
a Domain Specific Modelling Language (DSML) and these views are then inte-
grated. There are two main drawbacks of this approach: first, these languages,
and especially their semantics, are usually defined in a semi-formal way, thus
complicating their common understanding; and second, many properties are not
preserved during the integration of the various parts as the same concerns are
expressed in different DSMLs. Thus, if each concern in different views satis-
fies some requirements, there is no guarantee the concern of the whole system
combining these views will satisfy the same requirements.

A promising approach to tackle this problem is to abstract the common
concerns from the various parts expressed in different DSMLs in a common

2 M.Montin and M.Pantel

DSML. It allows to reason over this single DSML instead of the different DSMLs
of the various views. Then, the whole semantics of this common DSML should
be defined in a formal manner to provide a formal semantics for the concern
in each DSML. The Clock Constraint Specification Language (CCSL) from the
UML MARTE standard, developed by the AOSTE team from INRIA, provides
such a user dedicated language for the concurrency concern. Its operational
semantics is defined as an interpreter in the TimeSquare tool-set, but it lacks
a mechanized denotational semantics to formalize its underlying concepts and
conduct proofs both on models and associated tools, which is the core purpose
of this work. An added value of this mechanization is that it allowed to detect
several issues in the semi-formal CCSL denotational semantics.

This papers starts by defining core aspects of CCSL: The instants which
represent the event occurrences, the strict partial orders binding these instants
together, the clocks which are entities linking the instants to the actual modelled
concerns and finally more advanced concepts such as relations and expressions
around clocks to reach constraints definitions.

This work has been done using the Agda proof assistant (a language and
tool-set developed by Ulf Norell). Since a semi-formal denotational semantics
of CCSL already exists, the accent will be made throughout this paper on the
choices made to fit Agda. Pieces of Agda code will be given to point out different
aspects in our mechanization. They depict either data structures, definitions or
properties. Their representation in this paper is partial and some details have
been omitted to make them more understandable. These omissions include some
levels of universe, the explicit substitution for some implicit parameters as well as
some operators used to adapt the types of some terms. This last family of hidden
details is useful in the actual development because the relations and functions
are defined on instants where clocks tick, which are represented as pairs of values
(the witness instant and the proof that the clock ticks on that instant, encoded
as ∃ types). The whole development is available on the first author’s web page.

2 Representation of time

2.1 Instants

The main underlying concept of CCSL is the instants. Informally, an instant is
a point in a time-line where events can occur (dually a time-line is a sequence
of strictly ordered instants). It fits the common understanding of events that
occur at a specific time and can be preceded or followed by occurrences of other
events. This vision of time is usually modelled using numbers (real numbers
or integers) to represent such instants because they are totally ordered. In dis-
tributed systems however, this vision is usually unsuitable because these total
orders, however existent, cannot be observed. Only a partial representation of
time can be specified and leads to the use of partial order to model time, which
will be briefly described later on. This means that the use of numbers to repre-
sent time is not any more relevant than any other abstract set. In operational

Mechanizing CCSL 3

semantics, they will be used again because a specific linearisation of time is cho-
sen but this is not the case in our work. For this reason, instants in our work
is an unspecified Agda type - named Support, while Instant is the name of the
algebraic structure it forms when coupled with a partial order.

2.2 Strict partial orders

The common vision of a unique time-line on which events occur implies that
two instants are always comparable precedence-wise (like numbers with their
common order relation). However, in distributed systems, there is no global
clock, and only some events can be compared to each other. Partial orders are
thus used to represent the possible relations between the instants. In CCSL, each
pair of instants is either strictly comparable, through a precedence relation ≺,
equivalent, through a coincidence relation ≈ or neither of them.

2.3 CCSL specification

In this work, instants are represented as a classic set with an unspecified strict
partial order relation. Every CCSL construct specified in Agda is expressed using
this set, which is passed as a parameter to the different modules. This view is
different from the CCSL creators’ one, who see the instants of a system (the Time
Structure[15]) as the union of all the instants on which the different clocks tick.
This vision, synthesizing the Support set from the clocks, is not suitable for both
denotational semantics and tools like Agda. Indeed, sets are not axiomatic in
Agda and are emulated by predicates which are not usual sets as seen in the ZFC
theory. Thus, we had to change the status of the instants and the associated Time
Structure. This vision is more abstract and more suitable to building generic
proofs. It is then possible to assess if a given operational semantics behaves as
an instance of this more formal semantics.

3 Clocks

3.1 Intuitive definition

A clock is an entity that tracks the occurrences of a specific event in a given sys-
tem. A clock ticks whenever (i.e. at every instant) the event it represents occurs.
Such a system is represented by a set of clocks representing any possible event
that can occur during its execution. Each clock usually ticks an infinite number
of times – can be both ℵ0 (countable clocks representing discrete or dense time)
or ℵ1 (uncountable clocks representing only dense time)– and is partially repre-
sented in a time-line such as Figure 1. Discrete time means that, between two
ordered instants, there exists only a finite number of other instants. Dense time
means that, between two ordered instants, there exists always an infinite number
of other instants. In this example, the clock called c ticks three times during the
portion of time depicted in the diagram. The ticks are separated by a certain

4 M.Montin and M.Pantel

amount of time, unspecified – there is no scale on the diagram – because such a
system is usually asynchronous. Thus, the only relevant information depicted in
this diagram is that the event tracked by c occurred at least three times through-
out the lifetime of the system. This is however a very poor information which
must be completed with the addition of other clocks and constraints between
them.

c

Fig. 1. An example of a clock c

3.2 Formal definition

Formally, a clock is an Agda record which contains a subset of instants (the ones
on which it ticks) and the proof that these instants are totally ordered:

record Clock : Set where
constructor

[_◦_]
field

Ticks : Pred Support
TicTot : IsStrictTotalOrder {A = ∃ Ticks} (_≡_ on proj1) (_≺_ on proj1)

This clock record provides a constructor – [◦] – to build a clock and two
fields – Ticks and TicTot. The first field is a predicate (Pred) on the instants to
encode the subset on which the clock ticks, and the second is the proof that the
ticks of the clock are totally ordered (IsStrictTotalOrder). The constructor
has two underscores where its parameters will be placed – Assuming t is a subset
of instants and tot is the proof that the underlying partial order form a strict
total order on this subset of instants, then [t ◦ tot] is a Clock. Note that
the underlying set of this strict partial order is ∃ Ticks which can be seen as
the subset of instants on which the clock ticks. More technically, ∃ Ticks is the
type of elements of the form (x , Tx) where x is an instant and Tx the proof
that the clock ticks on x. The underlying relations of the strict partial order are
the projections of the coincidence and precedence relations – of the partial order
binding the instants – on the first element of these couples. For instance, ≡ on

proj1 is defined this way : (x , Px) ≡ (y , Py) on proj1 ⇔ x ≡ y.

4 Relations

4.1 Definition

In a complex and possibly heterogeneous system, many events – hence many
clocks – can be identified. An important aspect of CCSL is that it does not
handle differently complex and heterogeneous systems (in a way, in CCSL, each

Mechanizing CCSL 5

c1

c2

Fig. 2. Some instants are bond

system is heterogeneous compared to the atomistic description of each event it
provides). Each clock taken separately does not offer many interesting informa-
tion about the whole system, but bound together, they provide useful specifi-
cation about its global behaviour. This binding can be given as relations that
constrain the execution of the system and, in our framework, are described as
predicates over two clocks (mathematical relations). They enforce an order be-
tween some instants by requiring some of them to be bound by precedence –
red arrows – or by coincidence – dashed blue lines – as depicted in Figure 2. A
relation holds, by default, for the lifetime of the system. The global Agda type
for relations is:

Relation : Set
Relation = Clock → Clock → Set

Any predicate over two clocks (any set of couples of clocks) is a clock relation.

4.2 Main relations

CCSL provides several relations. Some are defined on generic clocks (both dense
and discrete). Others are restricted to discrete clocks. This paper only handles
the first kind presented in this section. The other kind is the object of a future
work.

Strict precedence A clock c1 is said to strictly precede another clock c2 when
each consecutive ticks of c2 is strictly preceded by a distinct and consecutive
ticks of c1. Note that the ”consecutive” word can only refer to discrete clocks. In
dense clocks, the equivalent is that every ticks of c1 placed between two mapped
ticks must be mapped as well. This mapping refers to the precedence function
that binds the instants of the two clocks together. This function will be described
more formally later on. Before getting to the formal definition of this relation,
let us consider some examples in Figures 3, 4 and 5.

c1

c2

Fig. 3. A standard precedence example

6 M.Montin and M.Pantel

c1

c2

Fig. 4. A specific precedence example

c1

c2

Fig. 5. An incorrect precedence example

In Figure 3, each instant of c2 is mapped to an instant of c1 in a way that
the precedence relation looks obvious. However, this definition does not require
this mapping to be bijective, which means c1 could have additional ticks that
are not mapped to ticks of c2. If these ticks occur after the ones mapped to
c2, like on figure 4, the precedence is still well-formed, as opposed to figure 5
where they are placed in between mapped ticks, thus compromising the relation.
One can observe that this problem could be avoided by changing the mapped
instant such that the additional ticks are always positioned as on figure 3. This
seems obvious when the number of ticks is finite, yet not so much when it is
not. The current paper version of CCSL denotational semantics does make that
last distinction between a well-formed and ill-formed precedence. This was an
issue that our mechanization work has revealed. This will be tackled in future
versions of CCSL and TimeSquare.

The precedence relation requires the existence of a function h which maps
the instants of c2 with the corresponding instants of c1. It is defined as follows:

1 [_]_�_ : (_ → _) → Relation
2 [h] [Tc1 ◦ _] � [Tc2 ◦ _] = ∀ (i j : ∃ Tc2) p →
3 (h i ∈ Tc1 × h i ≺ i) ×
4 (i ≺ j → h i ≺ h j) ×
5 (p ∈i J h i - h j K → ∃ λ (k : ∃ Tc2) → h k ≈ p)

This definition is composed of three predicates, at lines 3, 4 and 5. The first one
– line 3 – ensures that all ticks of c2 are mapped with ticks that respect the
required precedence; the second one – line 4 – ensures that the binding function
preserves the precedence order; the third one – line 5 – ensures that there is no
unmapped instants between two mapped instants. The ∀ is a syntactic sugar to
introduce quantities while × can be seen as the logical ”and” and the brackets
are delimiters for an interval. As a consequence of this definition, two clocks
are related by precedence if there exists a function such that they are related
through it:

� : Relation
c1 � c2 = ∃ λ h → [h] c1 � c2

Mechanizing CCSL 7

The λ here is a syntactic element used to introduce a new variable h in the
context from an existence proof (∃). This definition is transitive, and such a
transitivity has been proven in the framework, but is not presented here.

Non-strict precedence The non-strict precedence allows two mapped instants
to be coincident, thus the underlying relation is 4 instead of ≺ . This relation
is mostly similar to the strict precedence and will not be detailed thoroughly. A
simple example is given in Figure 6.

c1

c2

Fig. 6. An example of non-strict precedence

The Agda definition is the same as the strict precedence, except for the
substitution of the strict relation by the non-strict one. This relation has been
proven transitive as well. The two proofs are factorized through the abstraction
of the underlying relation (as well as are the definitions).

Subclocking A clock c1 is said to be a subclock of a clock c2 when every ticks
of c1 is coincident to a tick of c2. It means that whenever c1 ticks, c2 ticks as
well. Figure 7 shows an example of subclocking.

c1

c2

Fig. 7. c1 is a subclock of c2

The Agda definition of this relation is as follows:

v : Relation
[Tc1 ◦ _] v [Tc2 ◦ _] = ∀ (x : ∃ Tc1) → ∃ λ (y : ∃ Tc2) → x ≈ y

It states that whenever c1 ticks on an instant x1 – ∀ (x : ∃ Tc1) – there exist
an instant x2 on which c2 ticks – ∃ λ (y : ∃ Tc2) – which coincides with x1 .
This relation is transitive:

transv : ∀ {c1 c2 c3} → c1 v c2 → c2 v c3 → c1 v c3
transv c1c2 _ x with c1c2 x
transv _ c2c3 _ | y , _ with c2c3 y
transv _ _ _ | _ , x≈y | z , y≈z = z , trans≈ x≈y y≈z

8 M.Montin and M.Pantel

This proof uses a with construct which allows to add new quantities to the
context – and usually case split on them. It relies on the transitivity of the
underlying coincidence relation and combines it with the two inputs representing
the subclocking proofs.

Alternation There are some cases where precedence is not enough to fully
express the semantics or their relation. In Figure 8, the clock c1 ticks a third
time before the clock c2 ticks a second time.

c1

c2

Fig. 8. The precedence is insufficient

There are some cases where this kind of behaviour might be unwanted and
must be forbidden accordingly, forcing the the clocks to be further constrained.
This additional constraint coupled with the original precedence is called alterna-
tion. Two clocks are said to be alternated when one precedes the other in such
a way that two ticks of a clock cannot occur in between two ticks of the other
one. Note that the underlying precedence has to be strict for the relation to be
consistent. A non-strict precedence would lead to ill formed cases of alternation.
In this case, the trace of our system is actually the one presented on figure 9.

c1

c2

Fig. 9. c1 alternates with c2

In our framework, this relation is defined as follow:

�� : Relation
c1 �� c2 = ∃ λ h → [h] c1 � c2 × (∀ (x y : ∃ (Ticks c2)) → x ≺ y → x ≺ h y)

c1 alternates with c2 when the two following predicates hold: there exists a
function h such that c1 strictly precedes c2 through h; and h satisfies a certain
predicate through the precedence relation, hence enabling the alternation instead
of the simple precedence. It is thus trivial that alternation implies precedence.

Equality Two clocks c1 and c2 are equal when they only tick on coincident
instant. It means that if c1 ticks on i then there exists an instant j which coincides
with i and where c2 ticks. An example is represented in Figure 10.

Mechanizing CCSL 9

c1

c2

Fig. 10. c1 is equal to c2

This definition is exactly equivalent to a double subclocking:

v : GlobalRelation
c1 v c2 = c1 v c2 × c2 v c1

This relation has been proven to be an equivalence.

Exclusion Two clocks are in exclusion when they have no coincident ticks. An
example of exclusion is given on figure 11.

c1

c2

Fig. 11. c1 is in exclusion with c2

The Agda definition is the following:

] : Relation
[Tc1 ◦ _]] [Tc2 ◦ _] = ∀ (x : ∃ Tc1) (y : ∃ Tc2) → ¬ x ≈ y

This definition consists of a predicate that for any x and y, if c1 ticks on x
and c2 ticks on y, then x and y are not coincident.

5 Expressions

5.1 Definition

CCSL allows the definition of new clocks from existing clocks, which is acceptable
from an operational point of view. Creating new clocks usually sets an arbitrary
order between the instants on which the underlying clocks are ticking, which
means that instants apparently independent are getting related because a new
clock is created out of them. The common example is the union. The union of
two clocks ticks whenever one of the two clocks ticks. Since a clock has a total
order on its ticks, the ticks of the union must be totally ordered, which leads to
a total order on the ticks of the two other clocks. In our denotational framework,
everything is already existing, thus we cannot create such new clocks. We assume

10 M.Montin and M.Pantel

they already exist and propose to relate them using predicates to state that a
clock could be the result of such operation. To better comprehend this notion, let
us take the example of the addition between natural numbers. One can say that
3 is the result of the operation 1 + 2 while another point of view could be that
the triplet (3,2,1) is a member of the addition. We take the second point of view
to better match the denotational aspect of our work. The type of expressions is
thus defined as a relation between three clocks:

Expression : Set
Expression = Clock → Clock → Clock → Set

5.2 Examples of expressions

Intersection A common expression on clocks is the intersection. The clocks
which results from the intersection of two clocks only ticks on each instant where
they simultaneously tick:

≡∩_ : Expression
[Tc ◦ _] ≡ [Tc1 ◦ _] ∩ [Tc2 ◦ _] =

(∀ (x : ∃ Tc) → ∃ λ (y : ∃ Tc1) → ∃ λ (z : ∃ Tc2) → x ≈ y × x ≈ z) ×
(∀ (y : ∃ Tc1) (z : ∃ Tc2) → y ≈ z → ∃ λ (x : ∃ Tc) → x ≈ y)

This first part of this predicate states that whenever c ticks on an instant i,
there exists two instants j and k which are coincident to i and on which both
c1 and c2 ticks respectively. The second part states that if c1 ticks on i, c2 ticks
on j, and if these instants are coincident, then c ticks on an instant coincident
to them. Figure 12 shows an example of intersection.

c

c1

c2

Fig. 12. An example of intersection

Union The following predicate explains what it means for a clock to be the
union of two other clocks.

≡∪_ : Expression
[Tc ◦ _] ≡ [Tc1 ◦ _] ∪ [Tc2 ◦ _] =

(∀ (x : ∃ (Tc1 ∪ Tc2)) → ∃ λ (y : ∃ Tc) → x ≈ y) ×
(∀ (y : ∃ Tc) → ∃ λ (x : ∃ (Tc1 ∪ Tc2)) → x ≈ y)

Mechanizing CCSL 11

c

c1

c2

Fig. 13. An example of union

The first part of this predicate states that if either c1 or c2 ticks on an instant
x then there exists an instant y coincident to x on which c ticks. The second part
states that if c ticks on an instant y then there exists an instant x coincident to
y and on which either c1 or c2 ticks. Figure 13 is an example of union.

Note that in our framework and example, the clock c happens to be consistent
with the idea of the union of c1 and c2, but it is not the result of any operation.

Other expressions There exists a lot of other expressions (either fundamental
or derivative), some of them depending on the death instant, some other being
induced by a natural number. None of them will be detailed in this paper, whose
goal is not to present all CCSL constructs, but to explain the ideas behind their
mechanization.

6 Properties

One advantage of mechanizing a semi-formal semantics is that this one can be
validated by proving algebraic properties of the various operators, thus improving
confidence in the language definition.

6.1 Goal

A CCSL specification is a set of constraints applied to a set of clocks. These
constraints can be either relations or expressions, since both of these can in-
fluence the underlying ordering of the instants. The goal of this work is not to
solve a set of constraints (this is done by the INRIA TimeSquare tool) but to
provide a mechanized semantics for CCSL. It can be used to define and validate
additions to the language that may remain unclear or unspecified in a paper
version. One of these additions is the instant refinement, which is available at
[11]. Regarding a CCSL specification, one of the goals of our work is to reduce
the set of constraints it contains. For instance, if one of the constraints in the set
can be deduced from the other one, it should be removed. Another example is if
one of the clocks needs to be hidden from the specification, all constraints linked
to it must disappear without any loss of information regarding the other clocks.
In both cases, we need properties relating the different constraints in order to
achieve some unifications between them.

12 M.Montin and M.Pantel

Moreover, we also need these properties to assess the correctness of our de-
notational semantics regarding the common behaviour one expect about clocks,
relations and expressions. This section presents some of the ones we proved in
our framework. Most of these properties are not conceptually challenging, but
the proofs are not necessarily simple, and will not always be fully detailed. For
instance, the transitivity properties have already been mentioned and will be
left out of this section. It is important to understand that these properties are
fundamental because they are the foundation on which more advanced use cases
could be built.

6.2 Examples of properties

Subclock and exclusion If c1 is in exclusion with c3 and if c2 is a subclock of
c3 then c1 is in exclusion with c2 as well. This is intuitive since c2 ticks at most
each time c3 ticks. This can be expressed and proven in Agda:

excluSub : ∀ {c1 c2 c3} → c1] c3 → c2 v c3 → c1] c2
excluSub _ c2vc3 _ y _ with c2vc3 y
excluSub c1]c3 _ x _ x≈y | z , y≈z = c1]c3 x z (trans≈ x≈y y≈z)

The union is commutative If c can be viewed as the union of c1 and c2 then
it can also be viewed as the union of c2 and c1. To prove this property, we need
to be able to swap a sum of types, which is done by the following function:

flipSum : ∀ {a b} {A : Set a} {B : Set b} → A] B → B] A
flipSum (inj1 x) = inj2 x
flipSum (inj2 y) = inj1 y

Here inj1 and inj2 are the two constructors allowing to build an element of
a sum of types (either from an element of the first or second type). This leads
to the commutativity proof:

comUnion : ∀ {c} → Symmetric (c ≡_∪_)
comUnion (prop1 , prop2) = (λ {(x , Tx) → prop1 (x , flipSum Tx)}) ,

(λ y → case prop2 y of λ {((x , Tx) , x≈’y) → (x , flipSum Tx) , x≈’y})

Union and subclocking We can prove that each component of a union is a
subclock of the union. This can be proved in both ways (for both clocks) using
the symmetry of the union.

subUnionl : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c1 v c
subUnionl (prop1 , _) (x , Tc1x) = prop1 (x , inj1 Tc1x)

subUnionr : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c2 v c
subUnionr p = subUnionl (symUnion p)

Mechanizing CCSL 13

Unicity of union We can prove the union is unique relatively to the clock
equality defined earlier. We start by proving that if two clocks correspond to the
same union, one is a subclock of the other.

uu : ∀ {c0 c c1 c2} → c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c v c0
uu (_ , _) (_ , prop4) x with prop4 x
uu (prop1 , _) (_ , _) _ | y , _ with prop1 y
uu (_ , _) (_ , _) _ | _ , x≈y | z , y≈z = z , trans≈ (sym≈ x≈y) y≈z

We conclude by applying the previous property both ways.

unicityUnion : ∀ {c0 c c1 c2} → c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c v c0
unicityUnion p q = uu p q , uu q p

Commutativity of intersection The intersection is also commutative:

comInter : ∀ {c} → Symmetric (c ≡_∩_)
comInter (prop1 , prop2) =

(λ x → case prop1 x of λ {(y , z , x≈y , y≈z) → z , y , y≈z , x≈y}) ,
(λ y z x → case (prop2 z y) (sym≈ x) of λ {(t , t≈z) → t , trans≈ t≈z (sym≈ x)})

Intersection and subclocking If c is enforced to be the intersection of c1 and
c2, then c is a subclock of both of them, which can be proven.

subInterl : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c v c1
subInterl (prop1 , _) x with prop1 x
subInterl (_ , _) _ | y , _ , x≈y , _ = y , x≈y

subInterr : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c v c2
subInterr c≡c1∩c2 = subInterl (symInter c≡c1∩c2)

Unicity of intersection As for the union, we can prove that the intersection
is unique.

ui : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c v c0
ui (_ , _) (prop3 , _) x with prop3 x
ui (_ , prop2) (_ , _) _ | y , z , x≈y , x≈z with prop2 y z (trans≈ (sym≈ x≈y) x≈z)
ui (_ , _) (_ , _) _ | _ , _ , x≈y , _ | t , t≈y = t , trans≈ x≈y (sym≈ t≈y)

unicityInter : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c v c0
unicityInter p q = ui p q , ui q p

Intersection and union As a consequence, we can prove that the intersection
is a subclock of the union, using the transitivity of the subclocking.

subInterUnion : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∪ c2 → c0 v c
subInterUnion c0≡c1∩c2 c≡c1∪c2 = transv’ (subInterl c0≡c1∩c2) (subUnionl c≡c1∪c2)

14 M.Montin and M.Pantel

7 Related work

We provide a mechanization of the semantics of CCSL in a proof assistant. As
such, this approach could be reused for other concurrent languages. Such a work
has already been done using different kind of formal methods, for example [7]
using Higher Order Logic in Isabelle/HOL; [6] and [13] using the Calculus of
Inductive Constructions in Coq, whose description can be found in [2]. The use
of Agda in this development is motivated by the expressiveness of the language
coupled with its underlying unification mechanism - in other words, Agda allows,
for instance, to pattern-match on the equality proof, thus unifying its operands.
This provides an interactive proof experience that other tools that do not provide
unification lacks: Agda, as opposed to Coq, does not rely on the application of
tactics to inhabit types, but gives a well-designed framework to build them in
interaction with the type checker and unifier. More on Agda can be found in
[12], [8] and [3]. Although they differ from these two aspects, both of these tools
rely on the same underlying intuitionist type theory, first described in [9] and
clarified in [10].

The denotational semantics of CCSL on which this work is based can be
found in [4]. TimeSquare, the tool developed to describe CCSL systems as well
as solve constraint sets has been presented in [5]. As for CCSL itself, it was
first presented in [1]. Although our semantics aims at being the same as the
paper version, it differs through the way it has been expressed, to best suit the
constraints and the possibilities offered by Agda. An example of differences is
the handling of the notion of TimeStructure - see [15] - which was translated
from a constructive mathematical set theory to a generic type to better match
the use of a type theory. Other attempts at giving semantics to languages like
CCSL have been developed, such as a promising approach to give an operational
semantics to TESL that can be found in [14].

8 Conclusion

8.1 Summary

In this work, we have proposed a mechanization of CCSL in Agda. We have
clarified some notions inherent to this language (and even detected and cor-
rected an issues in the paper version of the denotational semantics), and have
proposed ways of encoding it in a proof assistant. Details about the lifetime of a
clock, encoded as a birth instant and a death instant have been omitted. Their
presentation would not have been suitable to this article. However, they have
been encoded in the framework and will be presented in another paper. This
work stands as an example of mechanization in Agda for a concurrent language,
as well as an attempt to provide the CCSL developers with a complete mecha-
nized semantics from which different features could eventually be extracted, as
explained in the next section.

Mechanizing CCSL 15

We advocate that mechanizing such semantics is mandatory when studying
complex languages and systems, as standard paper semantics suffer from a lack
of precise and complete formal and assisted verification.

8.2 Future work

This work brings different perspectives that would complete and extend both
CCSL and our semantics:

– We will define and prove as many properties as possible over the relations and
the expressions defined in CCSL, in order to provide a correct way to reduce
the set of constraints related to a certain specification. This will be done by
computing derived constraints and comparing them to those that have been
provided in the set.
– We are currently extending the language through the definition of instant
refinement [11] in order to ultimately encode the notions of simulation, bisimu-
lation and weak bisimulation in the framework to get a better hold over them.
It requires to consider sets of clocks and the relations that bind them.
– We will go deeper into the definition of the birth and death instants to handle
some difficulties that emerge with these notions. For instance, they induce the
loss of some algebraic properties which we would like to handle properly.
– We will handle relations and expressions specific to discrete clocks. This re-
quires to properly model these clocks which can be defined on infinite sets of
instants while necessarily having a finite set of ticks. This is currently being
investigated through the use of extensional equalities.

Acknowledgement

The authors would like to thank the CCSL team at INRIA for providing them
with their time and valuable expertise regarding this language.

16 M.Montin and M.Pantel

References

1. André, C., Mallet, F.: Clock Constraints in UML/MARTE CCSL. Research Report
RR-6540, INRIA (2008)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series (2004)

3. Bove, A., Dybjer, P.: Dependent types at work. In: Language Engineering and
Rigorous Software Development, International LerNet ALFA Summer School 2008,
Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tutorial Lectures. pp.
57–99 (2008)

4. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research Re-
port RR-8628 (2014)

5. Deantoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In:
TOOLS - 50th International Conference on Objects, Models, Components, Pat-
terns - 2012 (2012)

6. Garnacho, M., Bodeveix, J., Filali-Amine, M.: A mechanized semantic framework
for real-time systems. In: Formal Modeling and Analysis of Timed Systems - 11th
International Conference, FORMATS 2013, Buenos Aires, Argentina, August 29-
31, 2013. Proceedings (2013)

7. Hale, R., Cardell-Oliver, R., Herbert, J.: An embedding of timed transition systems
in HOL. Formal Methods in System Design 3(1/2) (1993)

8. Malakhovski, J.: Brutal [meta]introduction to dependent types in agda
9. Martin-Löf, P.: Intuitionistic type theory.

10. Martin-Löf, P.: Intuitionistic type theory. notes by giovanni sambin.
11. Montin, M., Pantel, M.: Ordering strict partial orders to model behavioural refine-

ment. In: Proceedings of 18th Refinement Workshop 2018, affiliated with FM 2018
and part of FLoC 2018 (2018)

12. Norell, U.: Dependently typed programming in agda. In: Proceedings of TLDI’09:
2009 ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, Savannah, GA, USA, January 24, 2009 (2009)

13. Paulin-Mohring, C.: Modelisation of timed automata in coq. In: Theoretical As-
pects of Computer Software, 4th International Symposium, TACS 2001, Sendai,
Japan, October 29-31, 2001, Proceedings (2001)

14. Van, H.N., Balabonski, T., Boulanger, F., Keller, C., Valiron, B., Wolff, B.: A
symbolic operational semantics for TESL - with an application to heterogeneous
system testing. In: Abate, A., Geeraerts, G. (eds.) Formal Modeling and Analy-
sis of Timed Systems - 15th International Conference, FORMATS 2017, Berlin,
Germany, September 5-7, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10419, pp. 318–334. Springer (2017). https://doi.org/10.1007/978-3-319-65765-
3 18, https://doi.org/10.1007/978-3-319-65765-3 18

15. Winskel, G.: Event structures. In: Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad
Honnef, 8.-19. September 1986 (1986)

