
Ordering strict partial orders to model
behavioural refinement

Mathieu Montin12 and Marc Pantel12

1 Université de Toulouse ; Toulouse INP, IRIT
2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France

2 CNRS ; Institut de Recherche en Informatique de Toulouse (IRIT)
Toulouse, France

Abstract. Software is now ubiquitous and involved in complex interac-
tions with the human users and the physical world in so-called cyber-
physical systems (Cps). Separation of concerns is thus a key issue in the
development of these ever more complex systems. Two different kinds
of separation exist : a first one corresponds to the different steps in a
development leading from the abstract requirements to the system im-
plementation and is qualified as vertical. It matches the commonly used
notion of refinement. A second one corresponds to the various compo-
nents in the system architecture at a given level of refinement and is
called horizontal. This contribution aims at providing a formal construct
for the verification of vertical separation in time models, through the
definition of an order between strict partial orders used to relate the dif-
ferent instants in asynchronous systems. This work has been conducted
using the proof assistant Agda and is connected to a previous work on
the asynchronous language CCSL, which has also been modelled using
the same tool.

Keywords: Instant refinement, partial orders, Agda

1 Introduction

1.1 Separation of concerns

Software is now ubiquitous and involved in complex interactions with the human
users and the physical world in so-called Cyber-Physical Systems (Cps). Since
these systems are increasingly dense and complex, separation of concerns is a key
issue in their development. There exists many kinds of separation of concerns in
Cps development : a first one corresponds to the different steps in a development
leading from the abstract requirements to the system implementation and is
qualified as vertical. It matches the commonly used notion of refinement [4, 25].
A second one corresponds to the various components in the system architecture
at a given level of refinement and is called horizontal.

The horizontal separation at design time is usually handled through the ex-
pression of the various system parts in different Domain Specific Modelling Lan-
guages (Dsml), the execution of which, for validation and verification purposes,



2

may rely on different Models of Computation (MoC). A sophisticated coordi-
nation of the various events occurring in the different parts is thus needed to
observe the global behaviour of the systems. This heterogenous modelling ap-
proach has been integrated in the Ptolemy toolset proposed by Lee et al. [7],
the ModHel’X toolset proposed by Boulanger et al. [16] and the Gemoc studio
proposed by Combemale et al. [8].

As for the vertical separation, it usually enforces a refinement relation be-
tween the different models of the same part of the system in order to ensure
the consistency of the various global executions. This approach is for example
advocated by the B and Event-B methods [1, 2] in order to prove the preserva-
tion of the properties from the specification to the implementation. In the case
of asynchronous systems, refinement corresponds to replacing τ transition by
effective actions. In the case of synchronous systems, refinement correspond to
decomposing an instant at a given level to several instants at the refined level.
Synchronous refinement has been widely studied in the case of synchronous MoC
first as oversampling for data-flow languages [24] and then as time refinement
for reactive languages [14, 21].

Our work takes place in Gemoc that mixes both horizontal and vertical sep-
aration of concerns. Indeed, Gemoc allows to define the various Dsml used to
model the various parts in a Cps in the various phases of the development. Thus,
Dsml are combined both in an horizontal and vertical manners. Gemoc relies
on the UML MARTE CCSL (Clock Constraint Specific Language) in order to
model both the MoC for the various Dsml [9, 11, 18, 19] and the coordination
between Dsml using the Behavioural Coordination Language (BeCooL) [17].
Our seminal work in Gemoc targeted the horizontal separation of concerns. This
contribution targets the vertical separation of concerns. More precisely, we want
to assess the relations between the various models of the same system part in
a vertical separation of concerns. In that purpose, we need to provide a mecha-
nized definition for the vertical relation and apply it to CCSL which is at the
core of the concurrent part of Gemoc.

This work handles this issue through the introduction of an instant refinement
relation inspired from time refinement in order to ultimately combine both hori-
zontal and vertical separation of concern in the design of heterogeneous systems.
In time models, that depict the temporal execution of heterogeneous systems,
partial orders are usually used to bind the instants together. This contribution
provides a formal construct for the vertical separation in these models, through
the definition of an order relation between these partial orders.

This relation is generic and can be applied to any system, the semantics of
which relies on a set of traces. It has been mechanized with the Agda proof
assistant, in order to be joined to a denotational semantics of CCSL, which has
already been mechanized using the same language and tool. This allows to assess
the properties of this new relation and prove that it preserves the semantics of
the different CCSL operators. This contribution relies on a thorough refinement
example corresponding to classical oversampling in synchronous systems.



3

1.2 Additional related works

Our proposal provides a mechanized refinement relation formalized in the Agda
proof assistant. We target its coupling with a previous mechanization of the
semantics of CCSL in the same proof assistant. This relation could thus be
integrated with any other concurrent languages. Formal mechanization of tem-
poral languages has already been done using other formal methods, for example
[15] uses Higher Order Logic in Isabelle/HOL; [13] and [27] use the Calculus of
Inductive Constructions in Coq, see [5]. The use of Agda in this development is
motivated by the expressiveness of the language and its underlying unification
mechanism, which provides an efficient interactive proof experience that other
tools might lack. More on Agda can be found in [26], [20] and [6]. Although
Agda differs from Coq by several aspects, both of these tools rely on the same
underlying intuitionist type theory, first described in [22] and clarified in [23].
The paper version of CCSL denotational semantics, which is connected to this
work, can be found in [10]. TimeSquare, the tool developed to describe CCSL
systems as well as solve constraint sets has been presented in [12]. As for CCSL
itself, it was first presented in [3].

1.3 Denotational semantics

Our work aims at being integrated in a denotational environment where CCSL
heart has been mechanized. This integration has already begun through the
proof of several properties of preservation regarding CCSL operators through
our notion of refinement, that will be described later on in this paper. This
means that our notion of refinement must be compatible with a denotational
world. Usually, this separation of concerns is deployed in operational environ-
ments, where instants are explicitly added to an existing set when a new layer
of refinement is added to the current description of the system. This vision is
purely operational because it requires an actual computation to make this ad-
dition. In a denotational semantics however, such an accretion of events cannot
be considered since we remain descriptive toward the notions we manipulate.
Let’s assume there exists a set E1 containing instants on which events occur.
Adding a layer of refinement induces the addition of new events occurring over
new instants. These instants can be regrouped in a set E2. The global set of
instants is then E = E1∪E2. In operational semantics, instants are just created
then added to the already existing set E1 while the new level of refinement is
described and computed. In a denotational point of view, all instants have al-
ways existed, regardless of whether they belong to a given layer of refinement
or another. The denotational semantics describes the link between the different
levels, rather than computing them.

These two visions are somewhat conceptually opposed and the tools used
to model and describe them differ as well. We chose to use Agda in this work.
Set theory is akin to describe operational semantics as they naturally embed
the operation of accretion through their axioms. In type theories, as the one on
which Agda is based, subsets and union are not natural, while these tools provide



4

the right level of expressivity to mechanize denotational semantics. This justifies
the use of Agda for this work where we remain descriptive and never actually
compute the traces of events on which our relation is ultimately defined. Ulti-
mately, our work should be coupled with operational semantics through proofs
of preservation.

1.4 Agda

Agda is a dependently typed programming language developed by Ulf Norell
at Chalmers University. As any other language, the types of which can depend
on values, it is expressive enough to build mathematical theories, thanks to
the Curry-Howard isomorphism, which ensures the correctness of any property
whose equivalent type is inhabited. The core of the language is an intuitionist
type theory, on which the well-known tool Coq is based as well. Although these
two languages share the same heart, they are quite different when it comes to
developing and proving properties. Coq uses named tactics, the action of which
is hidden from the reader of the Coq file – as well as the underlying lambda-
terms – while Agda provides a framework to help the programmer write them
by hand, thus making them visible in the Agda file. This framework is what
makes programming in Agda possible since typed lambda terms are arguably
impossible to write without software assistance, assuming their type reaches a
certain level of complexity.

Agda also differs from Coq by its native unification mechanism, which is usu-
ally summarised by ”Agda allows to pattern-match on equality proofs”. Although
unification can hardly be reduced to this simple sentence, Agda indeed allows to
case-split on the equality proofs, thus unifying the operands of the equality. More
generally, Agda is able to infer, by unification, the value of variables present in
the context of a proof. Coq does not provide such a straight-forward mechanism
and handles cases usually solved by unification in Agda with other ways that we
find less convenient.

This paper contains small pieces of Agda code, depicting either data struc-
tures, predicates or proofs established during our development. Although these
blocks help assessing the technical aspects of our work, their understanding is
not mandatory to understand the notions we describe and the reasoning be-
hind them. They only represent a small part in this paper and their presence is
justified by the underlying effort of mechanization present in this work.

2 Time and refinement

This section introduces notions inherent to time handling in asynchronous sys-
tems, from the instants to the relation of refinement between strict partial orders.
The sections regarding instants and partial orders summarize common knowl-
edge among researchers in the field of time handling in such systems, while the
section on refinement defines the relation of refinement we propose.



5

2.1 Instants

Instants are the main concept on which concurrent languages are defined. In-
formally, an instant is a point in time where events can occur. It matches, to
a certain extend, the common vision one has about time. However, time in
asynchronous systems cannot be depicted as a single timeline consisting of well
ordered instants. This is due to the lack of knowledge one can have regarding the
execution of such systems, when it is usually impossible to know, for all events
and their respective instants, whether one has happened before another. Another
difference with our perception of time is that several instants can be coincident,
which means they ”happen” simultaneously. This is the case for instance when
two successive events happen so close to each other that they cannot be distin-
guished. In some concurrent languages, such as CCSL, this vision is completely
embraced, since no instant can ”host” more than one event. This means that
two events that seem to occur simultaneously will still be carried by different
instants, but these instants will be coincident. This vision is closely linked to the
notion of refinement, because it assumes that there exists no ultimate level of
refinement on which an observer can know everything about the behaviour of a
system, since two coincident instants can always be distinguished when looking
close enough to the execution of the system. Our relation of refinement heavily
relies on this observation.

In our Agda framework, instants will be represented by a generic set, the
properties of which are unspecified. It exists and relations can be defined on top
of it. We call this set Support, and we leave the name Instant to the algebraic
structure which will be described in the next subsection. The cardinality of
this set also remains unspecified (we do not make assumptions on whether it is
countable or not prior to actual examples). It Agda, Set represents a type, and
not a mathematical set. In dependently typed languages, sets can be emulated
as unary relations (predicates over a type) but are not native constructs of the
languages. However we will often abusively call an Agda Set a set.

Support : Set

2.2 Strict partial orders

As explained in the previous subsection, time cannot be seen as a single line on
which events occur. Instead, it contains a possibly infinite set of timelines that
link instants that are observationally related. This means that the set of instants
is not coupled with a total order but rather with a partial order that represents
the knowledge the observer has of the behaviour of the system. This means that
each pair of instant is either :

• strictly comparable, through a precedence relation ≺
• equivalent, through a coincidence relation ≈
• independent, which means neither equivalent nor precedent



6

To form a partial order, these relations must fulfil certain properties, which
are, as a reminder :

• ≈ is an equivalence relation

• ≺ is irreflexive regarding ≈
• ≺ is transitive

• ≺ respects the equivalence classes induced by ≈

The Agda library provides such an algebraic structure.

record IsStrictPartialOrder {a `1 `2} {A : Set a}
(_≈_ : Rel A `1) (_<_ : Rel A `2) : Set (a t `1 t `2)

where field
isEquivalence : IsEquivalence _≈_
irrefl : Irreflexive _≈_ _<_
trans : Transitive _<_
<-resp-≈ : _<_ Respects2 _≈_

This record contains the four properties described earlier, which ensure the
two relations indeed form a strict partial order. The predicates IsEquivalence,
Irreflexive, Transitive, Respects are defined in the standard library as well.
They are not detailed here, as their functions are straightforward to understand.

2.3 A relation over strict partial orders

These reminders about strict partial orders and instants lead us to the defini-
tion of the relation of refinement. Since our approach is part of a denotational
context, we need to express a relation between certain ”quantities” that are rel-
evant to express refinement. These quantities cannot be the instants themselves
because they are not specific to a given execution, and they do not carry enough
information. However, the strict partial orders binding them embed the neces-
sary knowledge about the system behaviour to be ordered in a way that respects
the proposed time related instant refinement. Thus, we propose to instantiate
these so-called ”quantities” with the orders binding the instants together at a
given level of observation. This binding of orders between instants and not in-
stants themselves is the core contribution of this paper. The following relation,
expressed in Agda (in a way that is very close to the paper version) takes two
pairs of orders and expresses what it means that one pair refines the other.
These pairs of orders aim at being encapsulated in the previous definition of
strict partial orders.

Let us consider the following Agda relation.

_≺≈_ : ∀ {`} → Rel (Rel A ` × Rel A `) _
(_≈1_ , _≺1_) ≺≈ (_≈2_ , _≺2_) =

(∀ {a b} → a ≺1 b → a ≺2 b ] a ≈2 b) ×
(∀ {a b} → a ≺2 b → a ≺1 b) ×
(∀ {a b} → a ≈2 b → a ≈1 b ] a ≺1 b ] b ≺1 a) ×
(∀ {a b} → a ≈1 b → a ≈2 b)



7

In this definition, the level annotated by the index 1 is the lower (the more
concrete) level of observation and 2 is the higher. We state what it means for
a pair of relations to refine another pair of relation. Note that these relations
are defined on a set (here A) which will eventually be the instants. We can only
compare pairs of relations that are bounded to the same underlying set. This
relation is composed of four predicates, each of which indicate how one of the
four relations will be translated into the other level of observation.

• If a strictly precedes b in the lower level, then it can either be equivalent to
it in the higher level or still precede it. This means that a distinction which
is visible at a lower level can either disappear at a higher level or remain
visible, depending on the behaviour of the refinement around these instants.

• However, if a strictly precedes b in the higher level, then it can only still
precede it in the lower level. This means that the distinction between these
instants was already existing in the higher level, and cannot be lost when
refining. Looking closer to a system preserves precedence between instants.

• If a is equivalent to b in the higher level then the only thing we ensure is
that these two instants are still related in the lower level. This means that
both instants will still be related – they cannot become independent – but
there is no guarantee on the nature of this relation.

• If a is equivalent to b in the lower level, it can only stay equivalent in the
higher level. This means that looking at the system from a higher point of
view cannot reveal temporal distinction between events.

This definition is coherent with CCSL point of view where instants can only
hold one event. Two instants appearing coincident in a given level of refinement
can potentially always be refinement up to a point where a distinction appears,
which justifies the fact that they should not be attached to the same physical
instant. Our definition can be extended to strict partial order. A strict par-
tial order refines another when their underlying relations satisfy our relation of
refinement. This enlargement is purely syntactic.

3 A refinement example

Offstart On

Switch on

Switch off

Execute

Fig. 1: A simple system

This section presents a system example upon which our relation of refinement
can be applied. This is a simple system whose behaviour is represented as a



8

transition system depicted on Figure 1. This system can be switched on and off.
While it is on, an action can be executed any number of times. A possible trace
– amongst an infinite number of them – of this system is depicted in Figure 2.
ton, toff and tex respectively represent the occurrence of the ”switch on”, ”switch
off” and ”execute” transitions.

ton toff ton tex tex toff ton tex toff

Fig. 2: A trace on a single timeline

This trace starts with the birth of the system and possibly goes on indefi-
nitely, which makes this representation partial. In addition, this design places
each event on the same timeline, thus ignoring horizontal separation. In order
to make it visible, we will represent, from now on, every different event on a
specific timeline, such as on Figure 3. This approach is used in CCSL, where
each timeline is represented by a clock which tracks the occurrences of a specific
event. The instants on each timeline are totally ordered and those in the same
vertical dashed blue lines are coincident.

ton

toff

tex

Fig. 3: One timeline per event

The action executed by the system while running can be specified in various
ways. We imagine here that our system is connected to a light through the use of
a memory containing a variable x. This variable is assigned by our system to the
values 1 or 0, and the light is turned on and off accordingly. When the system is
switched on, the light remains down until a button is pressed which turns it on.
Pressing the same button will alternatively turn it off and on. Shutting down
the system turns it off. This behaviour is depicted on Figure 4.

By specifying our system behaviour, we defined events that can be added to
its traces. tx0

and tx1
respectively correspond to the variable x being assigned

0 and 1. These additions belong to horizontal separation since we added a new
part to our system (the module linked to the light). One of these possible traces
is depicted in Figure 5. Some events are occurring simultaneously, for instance
ton always occurs on an instant coincident to an occurrence of tx0

. Such relations
between events can be defined in CCSL (a simple case of sub-clocking).

It is important to notice that when specifying the action executed by this
system, we implicitly took a certain point of view. We deliberately ignored some



9

Offstart On

ton {x← 0}

toff {x← 0}

tex {x← 1− x}

Fig. 4: The system pilots a light

ton

toff

tex

tx0

tx1

Fig. 5: The trace of the system with the addition of the variable x

lower level concerns such as the way a computer system handles a memory. This
is where vertical separation takes place. Seeing closer to the machine will lead
to other events which can refine the access to the variable x. For instance, the
”switch on” event can be viewed as a succession of actions, such as powering
up the system, retrieving the address of x, computing (here there is no actual
computation since 1 is an atomic value, but there could be in the case of a more
complicated expression) the value of 1 and storing this value at the right address.
These events, except for the first one, are used to handle the computation and
the storing of a value in a memory. Taking into account these events require to
view the system at a lower level than before, in which case its representation as
a transition system is depicted in Figure 6.

1 2 3

Offstart On

ton

toff {x← 0}

tstack tcompute

tstore

tex {x← 1− x}

Fig. 6: The refined system

The ”switch on” transition has been refined in several transitions. ton repre-
sents the powering of the system, tstack the stacking of the address of x, tcompute

the computing of the value of the expression 1 and tstore the storing of the com-



10

puted value at the stacked address. Note that we only refined one transition here
for the sake of clarity and simplicity. Refining the other transitions would rely on
exactly the same reasoning which is of no use for the relevance of this example.

This analyse induces two different points of view on our system. The higher
level of observation is represented on Figure 7a. The events that are not refined
are omitted from now on, for the sake of clarity. They don’t influence the rea-
soning we are conducting, thus their omission is acceptable.

From the higher point of view, all the instants on which the sub-events occur
are equivalent both to each other and to the containing event. Their underlying
order is hidden and has no impact on the trace of the system at this level. The
lower point of view, however, is different, as depicted on Figure 7b.

con1

con2

cstack

ccomp

cstore

(a) The higher level of observation

con1

con2

cstack

ccomp

cstore

(b) The lower level of observation

Fig. 7: Both levels of observation

For the lower level of observation, the different instants are ordered in a
way such that they respect the specification in Figure 6. The blue dashed lines
represents the equivalence classes induced by the respective partial orders while
the red arrows represent the precedent relations of these orders (we did not
represent the links that can be deduced by transitivity or other properties of
partial orders).

0 5 10con1

1 6 11con2

2 7 12cstack

3 8 13ccomp

4 9 14cstore

(a) The higher level annotated

con1

con2

cstack

ccomp

cstore

0 5 10

1

2

3

4

6

7

8

9

11

12

13

14

(b) The lower level annotated

Fig. 8: Both annotated levels of observation



11

Until now, the instants on which the events occur formed an unspecified set.
Since our goal is to mechanize this example, we need to instantiate it to an
actual set. We chose the natural numbers because they allow to annotate the
traces while expressing quite easily the relations at both levels of refinement.
The annotated higher level of observation is given in Figure 8a.

This representation allows us to define the coincidence and the precedence
relations that bind its different instants, as subsets of N × N. Since both these
relations must be transitive, the coincidence must be symmetrical and they must
form a strict partial order. We omit the related elements which can be deduced
from these properties.

Coincidence Relation Precedence Relation

(0 , 1) (0 , 2) (0 , 3)
(0 , 5)

(0 , 4) (5 , 6) (5 , 7)

(5 , 8) (5 , 9) (10 , 11)
(5 , 10)

(10 , 12) (10 , 13) (10 , 14)

Since the traces are infinite, there are an infinite number of couples in each
relations. We only expressed them for the visible subset. We now define these
relations for any natural number, by relying on euclidean decomposition of their
operands by 5 :

∀(a, a′) ∈ N2,∃! (q, r, q′, r′) ∈ N4 : a = 5q+ r ∧ r < 5∧ a′ = 5q′+ r′ ∧ r′ < 5

These relations are defined as follow :

∀(a, a′) ∈ N2, a ≈2 a
′ ⇔ q = q′

∀(a, a′) ∈ N2, a <2 a
′ ⇔ q < q′

The same work can be achieved for the lower level of observation, which is dis-
played on Figure 8b. The relations extracted from Figure 8b are depicted in the
table below. As previously explained, only the relevant couples are mentioned.

Coincidence Relation Precedence Relation
(0 , 1) (1 , 2) (2 , 3) (3 , 4)

(5 , 6) (4 , 5) (6 , 7) (7 , 8)

(10 , 11) (8 , 9) (9 , 10) (11 , 12)

. . . (12 , 13) (13 , 14) . . .

By taking the same decomposition as before, we can mathematically define
the relations at the lower level of observation.

∀(a, a′) ∈ N2, a ≈1 a
′ ⇔ (q1 = q2)∧ ((r1, r2) ∈ [0, 1]2 ∨ (r1 = r2 ∧ r1 /∈ [0, 1]))

∀(a, a′) ∈ N2, a <1 a
′ ⇔ (q1 < q2) ∨ ((q1 = q2) ∧ (r1 < r2) ∧ (r2 6= 1))

Since both couples of relations have been defined mathematically, we can
prove that they correspond to a situation of refinement. The proof has been
done both on paper and in Agda, and is not presented here. It is available on
the first author’s web page 3

3 http://montin.perso.enseeiht.fr



12

4 Properties about the refinement relation

4.1 Mathematical properties

This section gives properties about the refinement relation we propose. The proof
for the properties are omitted, but are available on the first author’s web page
with the whole Agda development about refinement and CCSL.

A pre-order towards propositional equality: As a reminder, a pre-order is
an algebraic structure composed of an equivalence relation and a precedence re-
lation which is transitive and reflexive according to the equivalence relation. We
showed that our refinement relation formed a pre-order towards the propositional
equality. The propositional equality, in dependent types, is a family of types gen-
erated by the reflexivity rule. This means that two quantities are propositionally
equal if they were built with the same constructors.

A partial order towards the equivalence between relations: Two rela-
tions are equivalent when the subset they form are equal. We implemented this
definition for our couples of relations :

_≈≈_ : ∀ {`} → Rel (Rel A ` × Rel A `) _
(_≈1_ , _≺1_) ≈≈ (_≈2_ , _≺2_) = ∀ {a b} →

(a ≈1 b → a ≈2 b) × (a ≈2 b → a ≈1 b) × (a ≺1 b → a ≺2 b) × (a ≺2 b → a ≺1 b)

A partial order is a pre-order with an anti-symmetrical property between its two
underlying relations. We proved that our relation of refinement form a partial
order with this equivalence.

4.2 Refinement and CCSL

CCSL denotational semantics: In a previous work, we mechanized the de-
notational semantics of CCSL in Agda. This section gives the required notions
about this mechanization in order to connect it to our refinement relation.

CCSL is based on clocks, which represents the different occurrences of a
specific event. Typically, a clock represents one of the different timelines we
depicted in the different figures in this paper. In our work, we represent clocks
by a record containing a predicate to emulate the subset of instants on which
this clock ticks, and a predicate which makes sure the ticks of the clocks are
totally ordered regarding the given strict partial order:

record Clock : Set1 where
constructor

clock
field

Ticks : Pred Support lzero
TicTot : _≺_ isTotalFor Ticks

CCSL provides several constructs to constrain the different clocks of a system
amongst each other. They are grouped into two different categories : the relations
and the expression. A relation is a direct constraint between two clocks, while
an expression, in our denotational semantics, is a predicate over three clocks:



13

Relation : Set1
Relation = Clock → Clock → Set

Expression : Set1
Expression = Clock → Clock → Clock → Set

The goal of this paper is not to detail the whole semantics, hence we only
give one example of each of these categories. The relation we present is the
sub-clocking. A clock c1 is a sub-clock of a clock c2 when T (c1) ⊂ T (c2):

_v_ : Relation
(clock Tc1 _) v (clock Tc2 _) = ∀ {x1} → x1 ∈ Tc1 → ∃ \x2 → x1 ≈ x2 × x2 ∈ Tc2

The expression we will present is the union. A clock c is considered the union
of a clock c1 and a clock c2 when T (c) = T (c1) ∪ T (c2):

_≡_∪_ : Expression
clock Tc _ ≡ clock Tc1 _ ∪ clock Tc2 _ =

(∀ {i} → (Tc1 i ] Tc2 i) → ∃ \j → i ≈ j × Tc j)
× (∀ {i} → Tc i → ∃ \j → i ≈ j × (Tc1 j ] Tc2 j))

A relation between clocks: This clock definition allows extending our refine-
ment relation to clocks. Informally, a clock refines another one when it represents
a thinner event which was hidden by the first clock. For instance, if we get back
to our example, the ”switch on” clock is refined by several clocks, including the
”compute” one. Let us consider the following definition :

_refc_ : REL (Clock _) (Clock _) _
(clock Ticks1 _) refc (clock Ticks2 _) =
× (∀ {x} → Ticks2 x → ∃ λ y → Ticks1 y × (y ≈2 x))
× (∀ {x} → Ticks1 x → ∃ λ y → Ticks2 y × (y ≈2 x))

A clocks refines another if they are defined on refined partial orders, while also
obeying the following predicates : each tick of the more abstract clock is refined
by at least one tick of the concrete clock and each tick of the concrete clock is
the refinement of a tick of the abstract clock.

Proofs of semantic preservation: We prove the preservation of the semantics
of the CCSL constructs towards the refinement relation. This preservation is
described and discussed about the two semantic elements we presented, the
sub-clocking and the union. The preservation property about sub-clocking is
as follows: given four clocks ca, cb, c1, c2, if c1 is a sub-clock of c2, if c1 refines ca
and c2 refines cb then ca is a sub-clock of cb.

subclockingRefinement : c1 v1 c2 → c1 ≺refc c11 → c2 refc c22 → c11 v2 c22

The preservation property about union is a follows: given four clocks c0 c1,
c2 and c, if c1 refines c, if c2 refines c and if c0 = c1 ∪ c2 then c0 refines c.

unionRefinement : c1 refc c → c2 refc c → c0 ≡ c1 ∪ c2 → c0 refc c



14

5 Conclusion

This paper presented a relation over strict partial orders whose goal is to model
instant refinement. Each level of abstraction is represented by a specific strict
partial order while keeping the link between them. This definition is mechanized
in Agda, which allowed us to prove different algebraic properties about it as well
as connecting it to the mechanization of CCSL we made in a previous work.
The bridge between these two works has allowed us to prove the preservation of
several CCSL operators through our relation of refinement. This work will be
followed by several future works including:

• The extension of our link between CCSL and instant refinement through
the proof of additional preservation properties.

• The integration of instant refinement in CCSL and its associated toolset in
cooperation with the CCSL team at INRIA.

• The refactoring of a previous work regarding the weak bi-simulation between
Petri Net and models of processes (xSPEM) to prove language refinement
between xSPEM and their encoding in Petri Nets.

References

1. Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

2. Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

3. Charles André and Frédéric Mallet. Clock Constraints in UML/MARTE CCSL.
Research Report RR-6540, INRIA, 2008.

4. Ralph-Johan Back. On correct refinement of programs. J. Comput. Syst. Sci.,
23(1), 1981.

5. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. 2004.

6. Ana Bove and Peter Dybjer. Dependent types at work. In Language Engineering
and Rigorous Software Development, Intl. LerNet ALFA Summer School 2008,
Piriapolis, Uruguay, February 24 - March 1, 2008, Revised Tutorial Lectures, pages
57–99, 2008.

7. Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping heterogenous systems. Int.
Journal in Computer Simulation, 4(2), 1994.

8. Benôıt Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France, Jean-Marc
Jézéquel, and Jeff Gray. Globalizing modeling languages. IEEE Computer, 47(6),
2014.

9. Benôıt Combemale, Julien DeAntoni, Matias Vara Larsen, Frédéric Mallet, Olivier
Barais, Benoit Baudry, and Robert B. France. Reifying concurrency for executable
metamodeling. In Software Language Engineering - 6th Intl. Conf., SLE 2013,
Indianapolis, IN, USA, October 26-28, 2013. Proc., 2013.

10. Julien Deantoni, Charles André, and Régis Gascon. CCSL denotational semantics.
Research Report RR-8628, 2014.



15

11. Julien DeAntoni, Papa Issa Diallo, Ciprian Teodorov, Joël Champeau, and Benôıt
Combemale. Towards a meta-language for the concurrency concern in dsls. In Proc.
of the 2015 Design, Automation & Test in Europe Conf. & Exhibition, DATE 2015,
Grenoble, France, March 9-13, 2015, 2015.

12. Julien Deantoni and Frédéric Mallet. TimeSquare: Treat your Models with Logical
Time. In TOOLS - 50th Intl. Conf. on Objects, Models, Components, Patterns -
2012, 2012.

13. Manuel Garnacho, Jean-Paul Bodeveix, and Mamoun Filali-Amine. A mechanized
semantic framework for real-time systems. In Formal Modeling and Analysis of
Timed Systems - 11th Intl. Conf., FORMATS 2013, Buenos Aires, Argentina,
August 29-31, 2013. Proc., 2013.

14. Mike Gemünde, Jens Brandt, and Klaus Schneider. Clock refinement in imperative
synchronous languages. EURASIP J. Emb. Sys., 2013, 2013.

15. Roger Hale, Rachel Cardell-Oliver, and John Herbert. An embedding of timed
transition systems in HOL. Formal Methods in System Design, 3(1/2), 1993.

16. Cécile Hardebolle and Frédéric Boulanger. Modhel’x: A component-oriented ap-
proach to multi-formalism modeling. In Models in Software Engineering, Work-
shops and Symposia at MoDELS 2007, Nashville, TN, USA, September 30 - Oc-
tober 5, 2007, Reports and Revised Selected Papers, 2007.

17. Matias Ezequiel Vara Larsen, Julien DeAntoni, Benôıt Combemale, and Frédéric
Mallet. A behavioral coordination operator language (bcool). In 18th ACM/IEEE
Intl. Conf. on Model Driven Engineering Languages and Systems, MoDELS 2015,
Ottawa, ON, Canada, September 30 - October 2, 2015, 2015.

18. Florent Latombe, Xavier Crégut, Benôıt Combemale, Julien DeAntoni, and Marc
Pantel. Weaving concurrency in executable domain-specific modeling languages. In
Proc. of the 2015 ACM SIGPLAN Intl. Conf. on Software Language Engineering,
SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, 2015.

19. Florent Latombe, Xavier Crégut, Julien DeAntoni, Marc Pantel, and Benôıt
Combemale. Coping with semantic variation points in domain-specific modeling
languages. In Proc. of the 1st Intl. Workshop on Executable Modeling, (MODELS
2015), Ottawa, Canada, September 27, 2015., 2015.

20. Jan Malakhovski. Brutal [meta]introduction to dependent types in agda.
21. Louis Mandel, Cédric Pasteur, and Marc Pouzet. Time refinement in a functional

synchronous language. Sci. Comput. Program., 111, 2015.
22. P. Martin-Löf. Intuitionistic type theory.
23. P. Martin-Löf. Intuitionistic type theory. notes by giovanni sambin.
24. Jan Mikac and Paul Caspi. Temporal refinement for lustre. In Proc. of the 5th

Intl. Workshop on Synchronous Languages, Applications and Programs, Edimburg,
April 2005, 2005.

25. Carroll Morgan. The refinement calculus. In Program Design Calculi, Proc. of
the NATO Advanced Study Institute on Program Design Calculi, Marktoberdorf,
Germany, July 28 - August 9, 1992., 1992.

26. Ulf Norell. Dependently typed programming in agda. In Proc. of TLDI’09: 2009
ACM SIGPLAN Intl. Workshop on Types in Languages Design and Implementa-
tion, Savannah, GA, USA, January 24, 2009, 2009.

27. Christine Paulin-Mohring. Modelisation of timed automata in coq. In Theoret-
ical Aspects of Computer Software, 4th Intl. Symp., TACS 2001, Sendai, Japan,
October 29-31, 2001, Proc., 2001.


